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Lecture 4 Highlights 
Phys 402 

 
We started with the second order corrections to the perturbed Schrödinger 

equation: 
  nnn E ψψ =Η ,        (1) 
with '0 Η+Η=Η λ , solved assuming a perturbation series expansion: 
  ...2210 +++= nnnn ψλλψψψ       (2) 
  ...2210 +++= nnnn EEEE λλ       (3) 
and yielding (to second order):  
  0211201202 ': nnnnnnnn EEE ψψψψψλ ++=Η+Η     (4) 
The second-order equation can be solved using the fact that 1

nψ and 2
nψ can each be 

expressed as a linear combination of all the eigenfunctions of 0Η (a postulate of QM) as, 
  ∑

≠

=
nk

knkn a 01 ψψ   ∑=



02 ψψ nn b    (5) 

where the nka are known from the solution of the first-order equation in the last lecture, but 
the nb are unknown at this point.  Putting (5) into (4) and exploiting orthonormality (i.e. 
multiply both sides by *0

jψ and integrating over all space) yields (for the case nj = ): 
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(You will derive this for HW2.)  This represents the second order correction to the energy.  
It is sometimes necessary to calculate this because the first-order energy correction is zero.  
This result again assumes that the energy eigenvalues are non-degenerate. 
 As an example of second order perturbation theory we looked at the problem of a 
planar rigid rotator that has an electric dipole moment and is perturbed by a uniform 
electric field.  The unperturbed problem is that of a stick with moment of inertia 𝐼𝐼 that is 
in the xy-plane, rotating about the z-axis.  The rotation axis passes through the center of 
mass of the stick, and the center of mass is stationary, i.e. it has no linear kinetic energy.  
It just has kinetic energy of rotation, which is given by the classical expression 𝑇𝑇 = 𝐿𝐿𝑧𝑧2/2𝐼𝐼, 
where 𝐿𝐿𝑧𝑧 is the angular momentum for its rotation about the z-axis.  This expression is 
analogous to that for linear kinetic energy, which is linear momentum squared divided by 
twice the mass of the object.  An electric dipole is a charge-neutral object that is made up 
of two equal and opposite charges +q and –q that are separated by a distance 𝑠𝑠.  The electric 
dipole moment has a magnitude �𝑑𝑑� = 𝑞𝑞𝑞𝑞.  The direction of 𝑑𝑑 is along the line between the 
two charges, pointing from the negative charge to the positive charge.  Think of a diatomic 
molecule in which there is charge transfer from one atom to the other.  In an external 
electric field ℇ that is in the plane of the dipole, the dipole will have an energy of interaction 
given by ℋ′ = −𝑑𝑑 ∙ ℇ��⃗ .  We will treat this interaction energy as a perturbation.   
 The unperturbed quantum problem is given by ℋ�0𝜓𝜓𝑚𝑚0 = 𝐸𝐸𝑚𝑚0 𝜓𝜓𝑚𝑚0 , with ℋ�0 = 𝐿𝐿�𝑧𝑧2/2𝐼𝐼, 
and 𝜓𝜓𝑚𝑚0 = 1

√2𝜋𝜋
 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 and 𝐸𝐸𝑚𝑚0 = 𝑚𝑚2 ℏ2

2𝐼𝐼
 , with 𝑚𝑚 = 0, ±1, ±2, ±3, …  We dealt with the 𝐿𝐿�𝑧𝑧 =



 2 

−𝑖𝑖ℏ 𝑑𝑑
𝑑𝑑𝑑𝑑

 operator when we treated the hydrogen atom (see Griffiths Eq. (4.128)).  Recall 
that the integer values of 𝑚𝑚 arise from the condition that 𝜓𝜓0(𝜙𝜙 + 2𝜋𝜋) = 𝜓𝜓0(𝜙𝜙), which is 
the periodicity condition.  The perturbation is given by ℋ� ′ = −𝑑𝑑ℇ cos𝜙𝜙.  The first order 
correction to energy gives zero: 𝐸𝐸𝑚𝑚1 = �𝜓𝜓𝑚𝑚0 �ℋ� ′�𝜓𝜓𝑚𝑚0 ⟩ = 0.  This reflects the fact that the in-
plane electric field has zero net change in the energy of the dipole when averaged over the 
rotation angle 𝜙𝜙 ∈ {0,2𝜋𝜋}.  We now turn to the second order correction to the energy: 

 𝐸𝐸𝑚𝑚2 = ∑ �〈𝜓𝜓𝑘𝑘
0|ℋ′|𝜓𝜓𝑚𝑚0 〉�

2

𝐸𝐸𝑚𝑚0 −𝐸𝐸𝑘𝑘
0𝑘𝑘  

The matrix element in the numerator is 〈𝜓𝜓𝑘𝑘0|ℋ′|𝜓𝜓𝑚𝑚0 〉 = −𝑑𝑑ℇ
4𝜋𝜋 ∫ �𝑒𝑒𝑖𝑖(𝑚𝑚−𝑘𝑘+1)𝜙𝜙 +2𝜋𝜋

0
𝑒𝑒𝑖𝑖(𝑚𝑚−𝑘𝑘−1)𝜙𝜙� 𝑑𝑑𝑑𝑑.  The integrals are non-zero only when the exponents are zero, or in other 
words when 𝑘𝑘 = 𝑚𝑚 ± 1, in which case the integral has a value of 2𝜋𝜋.  This means that the 
infinite sum for 𝐸𝐸𝑚𝑚2  is reduced to just two terms!  After adding them up, the result is 𝐸𝐸𝑚𝑚2 =
𝐼𝐼ℇ2𝑑𝑑2

ℏ2
 1
4𝑚𝑚2−1

.   
 As an example of first-order perturbation theory consider the relativistic 
correction to the kinetic energy operator for an electron in the Hydrogen atom.  
Following the discussion in Griffiths pages 295-298 we found a relativistic correction to 
the kinetic energy operator as: 
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The new Schrödinger equation for the Hydrogen atom can now be written as: 
  ψψ E=Η , 

with '0 Η+Η=Η , and 
r

e
m

p
0

22
0

42 πε
−=Η is the original un-perturbed Hydrogen atom 

Hamiltonian, and 23
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−=Η  is the perturbation.  You know the solutions to the un-

perturbed problem from Phys 401 as the eigenfunctions ),,( φθψ rmn with eigenvalues 
2/6.13 neVEn −= , where n is the principal quantum number (𝑛𝑛 = 1, 2, 3, …),  is the 

angular momentum quantum number (ℓ ∈ {0, 1, 2, …𝑛𝑛 − 1} ), and m is the magnetic 
quantum number ( 𝑚𝑚 ∈ {−ℓ,−ℓ + 1, … 0, … ℓ − 1, ℓ} ).  We can also write the 
eigenfunctions in ket notation as mn ,, . 

We evaluate the change in energy to first order using the result derived in the last 
lecture: 
  rdE nnn

30*01 'ψψ∫∫∫ Η= , 

where 0
nψ are the unperturbed Hydrogen atom wavefunctions, and n now represents the list 

of H-atom quantum numbers mn ,, .  Evaluating the expectation value integral as in 
Griffiths yields the following result: 
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where the subscripts are now the principal quantum number n and angular momentum 
quantum number  of the Hydrogen atom, and 20 /eV 6.13 nEn −= .  We have also 
introduced a new and very important dimension-less parameter called the fine structure 
constant α .  This is a combination of four fundamental constants from electrodynamics, 
quantum mechanics and relativity: 
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 Note that the correction to the energy of the Hydrogen atom due to relativistic 
effects is on the scale of 02

nEα , which is roughly on the order of 310− eV, as compared to 
the ground state energy of order 10 eV.  Also note that the  dependence of the first-order 
corrected energy will lift some of the degeneracies of the un-perturbed hydrogen atom, and 
this will give rise to “fine structure” in the radiation emission spectrum of the atom.  In 
other words, some of the H-atom spectral lines will now be split into multiple lines (because 
of the  dependence of 1

,nE ) with an energy splitting on order 310− eV.  The science of 
atomic spectroscopy is very highly refined and such effects are visible in a spectrometer as 
“fine structure splitting” of the spectral lines.  Note that we will later calculate another 
contribution to fine structure splitting, namely spin-orbit interaction, and this will be on 
the same order of magnitude as the relativistic correction. 
 

 


